
Decentralized IoT with Wattsworth
John Donnal, Ryan McDowell, Michael Kutzer

Abstract—Low cost sensors, powerful single board computers,
and high bandwidth wireless networks have encouraged the
proliferation of IoT systems to both measure and control our
environment. Unfortunately those eager to realize the benefits
of IoT are generally forced to choose between centralized com-
mercial offerings or developing their own system from scratch.
The former is cost effective but brittle, while the later is flexible
but often impractical. Wattsworth is an open source platform
for decentralized IoT providing users with the best of both
worlds. Users can leverage a turn-key software stack while still
retaining total control of their systems with no dependency on
third party infrastructure. This paper presents three case studies
showing how Wattsworth solves traditionally challenging IoT
scenarios. In particular, these case studies illustrate how to collect
data from proprietary sensors, design complex user interfaces,
and coordinate diverse geographically distributed devices. Source
code, full documentation, and installation media for Wattsworth
are available at https://wattsworth.net.

I. INTRODUCTION

To date the majority of commercial IoT providers offer
centralized solutions often referred to as Platform-as-a-Service
(PaaS). In this model, users install brand specific hardware
which connects back to the central provider who stores the
data on behalf of their users [1]. Users then access their
data through a website or mobile phone application. While
convenient, PaaS systems expose users to a variety of security
and privacy issues, encourage vendor lock-in, and are often
difficult to customize beyond the expected use cases. But, most
importantly they require constant connectivity to the service
provider. If the provider’s server is unavailable either due to
a network interruption or a permanent termination of service,
the client is left with a crippled IoT system. Depending on
a third party to handle user data is unnecessary. A preferable
model is a decentralized system where nodes connect to each
other on demand and each is capable of collecting, processing,
and storing data locally [2]. A decentralized system is not in
contrast to the cloud. Centralizing data on the cloud can be
convenient, but by making it a requirement, and in particular
making it a requirement to use the vendor’s cloud, it becomes
a significant inconvenience. The user should be able to decide
if a cloud connection is necessary and if so, where and how
their data should be stored.

Wattsworth is a decentralized IoT platform that provides this
flexibility. A formal discussion of the system architecture can
be found in [3]. This paper focuses on the use of Wattsworth
in otherwise challenging IoT scenarios. Any device capable of
running Linux can be a Wattsworth node from single board
computers (SBC’s) to powerful cloud servers. All nodes run
the same code. Because of this each node is self sufficient
and does not necessarily require a network connection. While
such standalone operation is possible, Wattsworth nodes are

Fig. 1. Wattsworth is a decentralized IoT platform that uses a series
interconnected of modules, to collect, process and present sensor data. Reader
modules collect data from sensors, Filters process this data into actionable
information, and Apps present this information to users through a web
interface. The collection of modules is called a data pipeline.

designed to connect to one another. The particular architecture
is up to the user. By forming a mesh, data can move freely
between nodes with no single point of failure. By connecting
multiple nodes to a single centralized node users can build
systems similar to PaaS IoT, but under their own control.
Wattsworth is composed of two independent software stacks,
Joule and Lumen. Joule runs the data pipeline and Lumen runs
the user interface. The data pipeline is the core of Wattsworth.
It is composed of one or more modules that work together to
collect, process, and present sensor data. Data flows between
modules through streams. These streams are transport agnostic
meaning two modules may be connected locally on the same
machine or remotely across a network with no change to
the modules themselves. This provides the flexibility to place
modules at the most efficient location on the network in terms
of computation and storage resources.

II. WATTSWORTH MODULES

Modules provide the core functionality of Wattsworth. They
perform one of three tasks- generating data (Readers), process-
ing data (Filters), or presenting data (Apps). While modules
can be designed to implement more than one of these roles,
restricting modules to a single task reduces complexity and
facilitates code reuse. Figure 1 shows how the three module
types combine to form a data pipeline. Reader modules in-
terface with a sensor or an external Application Programming
Interface (API) to collect new data for the pipeline. They have
no input streams and one output stream. Filters process data
collected by Readers. They have one or more input streams and
may have one or more output streams. In addition to streams,
Filters can also write outputs to a shared relational database.
Depending on the type of information, it may be easier to
represent as relational data rather than a streaming time series.
Finally, Apps present the information produced by filters to
end users through a web interface. Apps may have one or more
input streams and no output streams. They can also access
the relational database. Joule spawns modules and tracks their



Fig. 2. During development, a module can run as a standalone executable
on the developer’s local machine while still connecting to the data pipeline
on an active Wattsworth node. This allows developers to use more powerful
software tools than are typically available on an IoT node.

execution, collecting logs and restarting any modules that fail.
Because modules run as separate processes, restarting one
module does not affect the rest of the pipeline. See [4] for
more detailed information on module architecture and pipeline
management. For continuity in the figures that follow modules
are shown in orange, Joule instances in green and Lumen
instances in purple. While every Wattsworth node is capable
of running both Joule and Lumen it is not a requirement (see
section IV).

A. Modules in Development

Writing software for IoT is particularly difficult because
the target hardware often has limited computational resources
and no traditional input/output devices such as a keyboard
or screen. Because of this, Wattsworth provides a standalone
execution environment for running a module on a development
machine (eg a laptop or desktop) with its inputs and outputs
connected to a live node called the target. This allows de-
velopers to use integrated development environments (IDE’s)
and visual debugging tools to inspect the execution of their
module while still having it run with the same streams as it
does in production. The particular structure of the standalone
execution environment depends on the module type. Readers
have no inputs and one output. When run in standalone mode
they may either connect their output to the target or write
it to stdout making it visible on the terminal. Using stdout
facilitates debugging, and also makes reader modules useful
outside of the Wattsworth environment because no target node
is required. Standalone execution of Filters is more complex
because they require multiple input and output streams as well
as access to the target’s relational database. Apps use the same
execution environment as Filters and also run a local web
server to host the user interface.

B. Modules in Production

Once a module is ready for production it can be deployed
to one or more nodes by transferring the code and adding
an associated configuration file to the Module Configuration
directory (/etc/joule/module_configs by default).
These configuration files are parsed on startup to create the
data pipeline. Stream configuration files may be used to cus-
tomize the data retention policies and specify the units, display

Fig. 3. In production, Wattsworth connects users to Apps through a series
of reverse proxies. These proxies provide user authentication and transport
layer security allowing developers to focus solely on the application logic
rather than the supporting infrastructure typically required for production web
servers.

types, and other aspects of stream elements. Complete details
on these configuration files is available in the Wattsworth
documentation and discussed in [4]. Streams connecting local
modules are carried by inter-process communication (IPC)
pipes and streams connecting remote modules are carried
by secured HTTPS connections similar to the standalone
environment discussed previously. Allowing remote users to
connect to Apps requires a more complex communication
architecture shown in fig. 3. Wattsworth is composed of two
separate software stacks, Joule and Lumen. Joule controls
module execution and Lumen provides a web interface to view
stream data and interact with Apps. This diagram shows the
communication path for a client using Lumen on Node A to
access an App running on Node B. When a client interacts with
an App, or any other aspect of Lumen, they provide a unique
cookie as an authentication token. Requests destined for an
App rather than Lumen itself are intercepted by Nginx which
is an open source reverse proxy server [5]. Nginx sends the
request header including the cookie to the local Lumen server
running on node A. If the cookie is authentic, Lumen returns
Nginx an API key for the associated Joule instance which
may be local or running on a different node in the network.
In this case the request is proxied to Node B where it is
again intercepted by Nginx. Like on Node A, Nginx sends the
header which includes both the unique App ID, and appended
API key to the Joule daemon for verification. If the API key
is valid, Joule responds with the UNIX socket path for the
App. Nginx then finally delivers the request to the target App
after modifying the headers and URL to make it appear as if
the request has come directly from a local user. This makes
the transition from development to production transparent.
Apps operate identically in development and production. An
additional benefit of this proxy structure is that it removes the
need for apps to handle user authentication and transport layer
security. This allows App designers to focus entirely on the
business logic of presenting information to end users. The rest
of this paper discusses how modules can be used to solve a
variety of challenging IoT scenarios.



Fig. 4. The Ambient Weather WS-1900 Osprey weather station [7]. This
system sends sensor data to api.ambientweather.net but it can be
converted to send data to a user-controlled Wattsworth node instead. This
removes the dependence on a third party for data collection and storage.

III. USING PROPRIETARY SENSORS

Despite the advantages of decentralized IoT, it is difficult to
find devices that are not tied to a specific vendor’s ecosystem
[6]. This is particularly true in the cost sensitive commercial
sector where vendors may artificially deflate the cost of
hardware expecting to recoup this loss with data analytics and
subscription fees. This business model does not encourage
interoperability between platforms. Fortunately it is often
possible to convert proprietary, vendor specific hardware, to a
decentralized system like Wattsworth. This section describes
the techniques required to perform such a conversion.

The Ambient Weather WS-1900 Osprey weather station
(fig. 4) is typical of proprietary IoT hardware. Its commu-
nication architecture is shown on the left side of fig. 5. The
system periodically transmits sensor data to a server run by the
vendor (path 2) where it is stored and accessible by the user
through a website (path 3). The right side fig. 5 shows the data
path once the unit has been converted to communicate with
a Wattsworth node instead. The details for a particular IoT
device may vary but this general procedure will work unless
the device has a hard coded certificate for the control server
or a pre-shared encryption key both of which are uncommon.

1) Monitor Communication: The first step is to monitor
the communication between the device and the control server.
This can be done using a network analyzer like Wireshark. In
order to intercept the network traffic the analyzer must either
run upstream of the wireless access point or on a client with an
adapter that can monitor wireless traffic in promiscuous mode.
The Osprey weather station does not use encryption, but for
devices that use secure sockets layer (SSL) or transport layer
security (TLS) to encrypt their traffic, a Man-In-the-Middle
(MitM) proxy like Fiddler [8] can be used recover the plain
text data. Once the traffic is intercepted, it needs to be analyzed
to determine the name of the control server and the end point
on that server that is used by the IoT device. For example,
the Osprey sends JavaScript Object Notation (JSON) encoded
data to api.ambientweather.net/endpoint.

2) Redirect Traffic: To find this server, the Osprey like any
other networked device, relies on the Domain Name System

Fig. 5. The communication architecture for an IoT device like the Osprey
(fig. 4) is shown on the left. By intercepting DNS requests (1) the data traffic
(2) can be redirected to a local Wattsworth node as shown on the right. In
both architectures, users interact with the data using a web application (3).

(DNS). DNS is a protocol that allows devices to convert
domain names into an IP address by querying one or more
resolvers. Path (1) on the left side of fig. 5 shows the typical
DNS resolution path. The Osprey queries the DNS resolver on
the local network, who forwards the query to its own resolver,
usually an Internet Service Provider (ISP), who may forward
it yet further until an authoritative resolver is found which
responds with the requested IP address. However, the local
DNS resolver can be reconfigured to respond to queries for
api.ambientweather.net with the Wattsworth node’s
IP address rather than recursively calling its own resolver for
the true address. This causes the Osprey to incorrectly route
its data to the Wattsworth node instead of the cloud as shown
in the right side of fig. 5. The final step is to capture this traffic
with a Reader Module on the node.

3) Process Sensor Data: While the data is now flowing to
the Wattsworth node it will be ignored by the operating system
because /endpoint is not associated with a server process.
To retrieve this data a reader module running on this node
hosts a local web server. A reverse proxy like Nginx can be
used to direct /endpoint to this local server and the reader
module will then receives all of the Osprey’s traffic. Once the
reader unpacks the data and writes it to its output stream, the
data can be be presented to the user through an App (path 3)
providing the same user experience as the vendor’s website. Of
course to support remote data access at least one of the nodes
in the Wattsworth mesh must be reachable outside of the local
network (not shown in this figure). This is typically solved
by running a node on a virtual private server (VPS) with a
cloud provider like Azure or AWS and using a virtual private
network (VPN) to connect back to nodes like this one which
sit behind network address translation (NAT) boundaries. This
type of architecture is discussed in section IV.

IV. MODULAR USER INTERFACES

In addition to the challenge of simply collecting data,
effective IoT systems must present this data to users in a way
that is relevant and actionable. Designing interfaces is time



Fig. 6. A research platform for designing optical diagnostics for additive
manufacturing (AM). Two USB cameras record the print head and five
encoders track the motion of each stepper motor. Wattsworth is used to provide
a visual interface to control printer operation and manage data collection.

Fig. 7. The AM Research Platform data pipeline. Postion and Telemetry are
reader modules that collect sensor data. Printer Control is an App that controls
the USB cameras and labels data collected by the Readers. The Printer Control
App and Octoprint are available through Lumen, the Wattsworth webserver.

consuming and can be particularly frustrating as users request
different and perhaps conflicting features. Wattsworth Apps
simplify interface development. By using Apps and Lumen’s
built-in visualization tools, developers can build custom inter-
faces from multiple components with a minimal amount of
code. The following case study illustrates the benefits of this
modular approach.

Figure 6 shows a research platform for developing new
additive manufacturing (AM) diagnostics. A TAZ6 printer [9]
is retrofitted with video cameras and high precision encoders
that monitor each stepper motor. The system is operated by
users who do not have an intimate knowledge of Linux or
the command line so a visual UI was required. Designing an
interface to control printer operation as well as manage the
data collection is a complex task that would typically require
significant software development. However, using Wattsworth,
a modular UI combining a minimal amount of custom code
with existing open source software was designed in only a few
days.

The system is managed by an Intel NUC running both
the Joule and Lumen components of Wattsworth as shown
in fig. 7. Octoprint, an open source software application, is
used to control the TAZ6. Octoprint hosts both a web based
user interface and an application programming interface (API).
The API allows other programs to receive telemetry data such
as bed and extruder temperature. The Joule pipeline uses
two Reader modules, the first collects data from the stepper

Fig. 8. The AM Research Platform user interface is powered by Lumen. The
Data Explorer, currently selected, is a built-in interactive plotting tool. The
Printer Control App, Octoprint, and a list of recorded videos are displayed in
the other tabs as shown on the right.

motor encoders and the second collects telemetry data from
Octoprint. These two streams are connected to an App module
that controls the video cameras. The App provides a simple
interface that allows a user to enter a name and description for
an experiment and then begin collecting video and sensor data.
Videos are stored in the local file system and sensor data is
stored in the Joule timeseries database. Octoprint and the App
module are combined by Lumen into the composite interface
shown in fig. 8.

V. BUILDING DISTRIBUTED SYSTEMS

This final case study discusses a more complex system
architecture that highlights Wattsworth’s ability to coordinate
data collection across diverse and geographically distributed
devices. The test bench shown in fig. 9 consists of three
separate nodes: a Raspberry Pi Zero, a Raspberry Pi 4,
and an Amazon Web Services (AWS) virtual private server
(VPS). These nodes are connected as shown in the block
diagram in fig. 10. Directional arrows indicate master-follower
relationships. Arrows point from followers to masters. Either
Lumen or Joule may be a master of another Joule instance.
Connecting Joule instances allows a pipeline to extend from
the follower to the master. Connecting Joule to a Lumen
instance makes its data streams and Apps available to users
through the web interface. Relationships are authenticated with
unique API keys and all network traffic between instances is
encrypted with Transport Layer Security (TLS).

In this setup the Pi Zero runs a Reader module that collects
GPS data. This data is stored locally on the Zero but is
accessible by the Pi 4 because of the master-follower rela-
tionship. A reader module on the Pi 4 uses a data acquisition
device (DAQ) to monitor two potentiometers. The red and
green wires indicate their physical rotation. An App on the
Pi 4 subscribes to both the remote GPS data and to the
local potentiometer data to create the interface shown in
fig. 11. Apps may be nested inside the Lumen interface as
shown in fig. 8 or displayed in a separate window. In this
case the 2.8” screen on the Pi 4 is displaying the App in a
full screen window. This gives the appearance of a single-
purpose embedded system but without requiring any platform
specific code. Finally, a Wattsworth node running on the AWS



Fig. 9. Distributed IoT test bench. The Pi 4 combines GPS data from the Pi
Zero with two potentiometers (red and green dials) to create a simple user
interface. This interface is displayed on a 2.8” TFT screen and is also available
at https://sandbox.wattsworth.net.

Fig. 10. The Wattsworth architecture for the test bench in fig. 9. The Pi Zero
only runs Joule while the Pi 4 runs both Joule and Lumen. An App on the
Pi 4 hosts an interface that is available through the local Lumen and through
a remote Lumen running on an EC2 instance in AWS.

cloud allows remote users to view the same interface on a
mobile phone. Cloud nodes like this one are often required
for remote access due to Network Address Translation (NAT)
boundaries which are common in commercial and residential
networks. It is important to note that the App itself contains
no logic for controlling 2.8” displays, network security, or
user authentication. All of this is handled transparently by
Wattsworth allowing the App designer to focus solely on the
design of the interface itself.

VI. FUTURE WORK

While Wattsworth is fully operational as described, there are
many areas for future work. Designing resilient pipelines that
adapt to network partitions or module failures is one area of
particular interest. Work by [10]–[12] on dynamic resource
allocation in distributed computing environments could be
adapted to provide automatic load balancing and dynamic
module placement based on network conditions. Another area
we hope to explore is alternative inter-module communication
strategies. The stream abstraction is well suited to continuous
time series data like that produced by sensors, but does not

Fig. 11. Viewing the Raspberry Pi 4 Data App on an iPhone SE. Note the
padlock icon which indicates the data is encrypted between the phone and
the Lumen server at sandbox.wattsworth.net. Lumen proxies each
request back to Joule on the Pi 4 which then proxies it to the App itself.

work as well for asynchronous information like user interac-
tion or control signals. Alternative topologies like message
passing [13], [14] and remote procedure calls [15] could
enable exciting new applications in distributed control.

VII. CONCLUSION

Wattsworth is an open source platform for decentralized IoT
systems. By providing code, documentation, and examples un-
der a widely permissive license we hope to encourage research
in decentralized IoT and to provide a viable alternative to
the currently predominant Platform-as-a-Service IoT model.
Critiques and contributions to the code base are encouraged.

ACKNOWLEDGMENT

This work was funded by the Office of Naval Research
under Grant Number N0001419WX00587 and the Naval Sea
Systems Command (NAVSEA) Engineering Directorate (05T).

REFERENCES

[1] S. Yangui, P. Ravindran, O. Bibani, R. H. Glitho, N. Ben Hadj-Alouane,
M. J. Morrow, and P. A. Polakos, “A platform as-a-service for hybrid
cloud/fog environments,” in 2016 IEEE International Symposium on
Local and Metropolitan Area Networks (LANMAN), June 2016, pp. 1–7.

[2] M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, Dec 2016.

[3] J. Donnal, “Wattsworth: An open source platform for decentralized
sensor networks,” IEEE Internet of Things Journal, pp. 1–1, 2019.

[4] ——, “Joule: A real-time framework for decentralized sensor networks,”
IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3615–3623, Oct 2018.

[5] C. Nedelcu and M. Fjordvald, Nginx HTTP Server. Packt.
[6] B. Ahlgren, M. Hidell, and E. C. . Ngai, “Internet of things for smart

cities: Interoperability and open data,” IEEE Internet Computing, vol. 20,
no. 6, pp. 52–56, Nov 2016.

[7] “Ws-1900 osprey solar powered weather station,” Ambient Weather
https://www.ambientweather.com/amws1900.html, accessed: 2019-11-1.

[8] E. Lawrence, Debugging with Fiddler, Austin, Texas, 5 2015.
[9] “Lulzbot taz 6,” https://www.lulzbot.com/store/printers/ lulzbot-taz-6,

accessed: 2019-11-2.



[10] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing
resource allocation in three-tier iot fog networks: A joint optimization
approach combining stackelberg game and matching,” IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1204–1215, Oct 2017.

[11] H. Shah-Mansouri and V. W. S. Wong, “Hierarchical fog-cloud comput-
ing for iot systems: A computation offloading game,” IEEE Internet of
Things Journal, vol. 5, no. 4, pp. 3246–3257, Aug 2018.

[12] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource allocation
strategy in fog computing based on priced timed petri nets,” IEEE
Internet of Things Journal, vol. 4, no. 5, pp. 1216–1228, Oct 2017.

[13] L. Duan, C. Sun, Y. Zhang, W. Ni, and J. Chen, “A comprehensive secu-
rity framework for publish/subscribe-based iot services communication,”
IEEE Access, vol. 7, pp. 25 989–26 001, 2019.

[14] L. Roffia, F. Morandi, J. Kiljander, A. D’Elia, F. Vergari, F. Viola,
L. Bononi, and T. Salmon Cinotti, “A semantic publish-subscribe ar-
chitecture for the internet of things,” IEEE Internet of Things Journal,
vol. 3, no. 6, pp. 1274–1296, Dec 2016.

[15] A. Sterz, L. Baumgärtner, R. Mogk, M. Mezini, and B. Freisleben, “Dtn-
rpc: Remote procedure calls for disruption-tolerant networking,” in 2017
IFIP Networking Conference (IFIP Networking) and Workshops, June
2017, pp. 1–9.


